tetrahedron$82584$ - перевод на голландский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

tetrahedron$82584$ - перевод на голландский

SHAPE FORMED BY INTERSECTING FOUR BALLS
Reuleaux Tetrahedron; Meissner body; Meissner's tetrahedron; Meissner bodies; Reuleaux-Tetrahedron
  • Reuleaux Tetrahedron

tetrahedron      
n. driehoekige piramide

Определение

Tetrahedron
·noun A solid figure inclosed or bounded by four triangles.

Википедия

Reuleaux tetrahedron

The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. The spherical surface of the ball centered on each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron. Thus the center of each ball is on the surfaces of the other three balls. The Reuleaux tetrahedron has the same face structure as a regular tetrahedron, but with curved faces: four vertices, and four curved faces, connected by six circular-arc edges.

This shape is defined and named by analogy to the Reuleaux triangle, a two-dimensional curve of constant width; both shapes are named after Franz Reuleaux, a 19th-century German engineer who did pioneering work on ways that machines translate one type of motion into another. One can find repeated claims in the mathematical literature that the Reuleaux tetrahedron is analogously a surface of constant width, but it is not true: the two midpoints of opposite edge arcs are separated by a larger distance,

( 3 2 2 ) s 1.0249 s . {\displaystyle \left({\sqrt {3}}-{\frac {\sqrt {2}}{2}}\right)\cdot s\approx 1.0249s.}